EMC TEST REPORT

EN 55032:2015 EN 55024:2010/A1:2015 EN 61000-3-2:2014 EN 61000-3-3:2013

MEASUREMENT AND TEST REPORT

For

Guangzhou BaoLun Electronics Co., Ltd.

NO.1 Building B Block Zhongcun Street Panyu Guangzhou China

Models:

TV-88VS1、TV-8216U、TV-88VS2、TV-8208、TV-88VS3、TV-8312、TV-88VS7、TV-8520、TV-81Z6、TV-8640、TV-81X16、TV-887、TV-8V900、TV-8164、TV-8V700、TV-8600CR、TV-8204U、TV-8800C、TV-8208U、TV-8880CR、TV-8928、TV-8910P、TV-8938、TV-8920P、TV-8948、TV-81X4、TV-89U3

December 11, 2019

This Report Con-	cerns: Equipment Type:
Original Repo	rt Splice screen processor
Test Engineer:	Eric / Bric
12 7	
Report Number:	TH19LR-2314E
Z'	
Test Date:	December 062 100 22019
Ly X	
\$	HEDVIN 10 VI
Reviewed By:	Prince 7 7 1 100
3,	\$\$P\$ **********************************
Approved By:	Prince / Prince /
^	3670
Prepared By:	Shenzhen Tian Hai Test Technology Co.,Ltd.
2 20	4F, A3 BLDG, The Silicon Valley Power intelligent terminal
99	industrial park, Guanlan street, Longhua district, Shenzhen
V. S.	Tel: +86-755-86615100
5	Fax: +86-755-86615105

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior written consent of Shenzhen Tian Hai Test Technology Co.,Ltd.

TABLE OF CONTENTS

1 - GENERAL INFORMATION	,6		5	<u> </u>	<i>7</i>
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT					
1.2 Test Standards					
1.3 Test Summary					
1.4 Test Methodology					
1.5 TEST EQUIPMENT LIST AND DETAILS					
2 - SYSTEM TEST CONFIGURATION	I	•••••			
2.1 JUSTIFICATION	<u> </u>			,5	
2.2 EUT EXERCISE SOFTWARE					
2.3 SPECIAL ACCESSORIES					
2.4 Basic Configuration of Test System.					
2.5 TEST SETUP DIAGRAM					
3 - DISTURBANCE VOLTAGE AT TH	E MAINS TERMINA	LS	4		Z.,
3.1 MEASUREMENT UNCERTAINTY					
3.2 LIMIT OF DISTURBANCE VOLTAGE AT TH					
3.3 EUT SETUP	E MAINS TERMINALS (CEA	133 D)	5		••••••
3.4 Instrument Setup	,9	A		<i>A</i> .	
3.5 TEST PROCEDURE					
3.6 SUMMARY OF TEST RESULTS					
3.7 DISTURBANCE VOLTAGE TEST DATA					
3.8 Test Result					
4 - RADIATED DISTURBANCES		1		F	1
4.1 Measurement Uncertainty				_	
4.2 LIMIT OF RADIATED DISTURBANCES (CLA					
4.3 EUT SETUP					
4.4 Test Receiver Setup					
4.5 TEST PROCEDURE					
4.6 CORRECTED AMPLITUDE & MARGIN CAL					
4.7 RADIATED EMISSIONS TEST RESULT					
4.8 Test Result					1
5 - HARMONIC CURRENT TEST (EN	61000-3-2)		7/1		1
5.1 APPLICATION OF HARMONIC CURRENT EM	MISSION			5	1
5.2 MEASUREMENT DATA					
5.3 Test Results					
6 - VOLTAGE FLUCTUATIONS AND			1.0		
X X					
6.1 APPLICATION OF VOLTAGE FLUCTUATION 6.2 MEASUREMENT DATA					
6.3 TEST RESULTS	~		~		1
, V-	_	^			
7 - EN 55024 TEST PROCEDURES					
7.1 ELECTROSTATIC DISCHARGE TEST SYSTE	1.7				
7.2 RADIATED SUSCEPTIBILITY TEST SYSTEM					
7.3 ELECTRICAL FAST TRANSIENT/BURST IMM					
7.4 Surge Immunity Test System					
7.5 CONDUCTED SUSCEPTIBILITY TEST SYSTE					
6.6 Power Frequency Magnetic Field Im					
7.7 VOLTAGE DIPS, SHORT INTERRUPTIONS IN					
7.8 EQUIPMENT TEST TABLE					
7.9 Instrument Calibration					
8 - EN 55024 TEST PROCEDURES					2
Report No.: TH19LR-2314E	Page 2 of	33	E	EN 55032 Repo	ort

8.1 EUT AND CABLE PLACEMENT	
8.2 APPLICATION OF ELECTROSTATIC DISCHARGE IMMUNITY TEST	20
8.3 APPLICATION OF RADIATED SUSCEPTIBILITY TEST	
8.4 APPLICATION OF ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST	20
8.5 APPLICATION OF SURGE IMMUNITY TEST	
8.6 APPLICATION OF CONDUCTED SUSCEPTIBILITY TEST	
8.7 APPLICATION OF POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST	21
8.8 APPLICATION OF VOLTAGE DIPS, SHORT INTERRUPTIONS IMMUNITY TESTS	
8.9 DEVIATIONS FROM THE STANDARD	21
9 - TEST DATA	17 22
9.1 ELECTROSTATIC DISCHARGE IMMUNITY TEST (IEC 61000-4-2)	22
9.2 RADIATED SUSCEPTIBILITY TEST (IEC 61000-4-3)	23
9.3 ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST (IEC 61000-4-4)	23
9.4 SURGE IMMUNITY TEST (IEC 61000-4-5)	24
9.5 CONDUCTED SUSCEPTIBILITY TEST (IEC 61000-4-6)	24
9.6 VOLTAGE DIPS, SHORT INTERRUPTIONS IMMUNITY TESTS (IEC 61000-4-11)	
10 - TEST RESULTS.	
10.1 IEC 61000-4-2 ELECTROSTATIC DISCHARGE IMMUNITY TEST CONFIGURATION	
10.2 IEC 61000-4-3 RADIATED SUSCEPTIBILITY TEST CONFIGURATION	26
10.3 IEC 61000-4-4 ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST CONFIGURATION	
10.4 IEC 61000-4-5 Surge Immunity Test Configuration	
10.5 IEC 61000-4-6 CONDUCTED SUSCEPTIBILITY TEST CONFIGURATION	
10.6 IEC 61000-4-11 Voltage Dips, Short Interruptions Immunity Tests Configuration	26
APPENDIX A - PRODUCT LABELING	27
CE MARKING LABEL SPECIFICATION	27
PROPOSED LABEL LOCATION ON EUT	
APPENDIX B - EUT PHOTOGRAPHS	
APPENDIX B - EUT PHOTOGRAPHS	28
ADDENDIV C. TEST SETUD DUOTOCD ADUS	~ 22

Report No.: TH19LR-2314E Page 3 of 33 EN 55032 Report

1 - GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant: Guangzhou BaoLun Electronics Co., Ltd.

Address of applicant:

NO.1 Building B Block Zhongcun Street Panyu Guangzhou China

Manufacturer: Guangzhou BaoLun Electronics Co., Ltd.

Address of manufacturer: NO.1 Building B Block Zhongcun Street Panyu Guangzhou China

General Description of E.U.T

EUT Description: Splice screen processor

TV-88VS1、TV-8216U、TV-88VS2、TV-8208、TV-88VS3、TV-8312、

TV-88VS7、TV-8520、TV-81Z6、TV-8640、TV-81X16、TV-887、TV-8V900、

Model No.: TV-8164、TV-8V700、TV-8600CR、TV-8204U、TV-8800C、TV-8208U、

TV-8880CR、TV-8928、TV-8910P、TV-8938、TV-8920P、TV-8948、

TV-81X4、TV-89U3

Rating: AC100-240V, 50/60Hz

Note: All of test performed on the model TV-8600CR.

Remark: * The test data gathered are from the production sample provided by the manufacturer.

1.2 Test Standards

The following Declaration of Conformity report of EUT is prepared in accordance with

EN 55032:2015

EN 55024:2010/A1:2015

EN 61000-3-2: 2014

EN 61000-3-3: 2013

The objective of the manufacturer is to demonstrate compliance with the described standards above.

Report No.: TH19LR-2314E Page 4 of 33 EN 55032 Report

1.3 Test Summary

For the EUT described above. The standards used were EN 55032Class B for Emissions & EN 55024 for Immunity.

Table 1: Tests Carried Out Under EN 55032:2015

Standard	Test Items		Status
EN 55022-2015	Disturbance Voltage at The Mains Terminals (0.15MHz To 30MHz)		1
EN 55032:2015	Radiated Disturbances (30MHz To 1000MHz)	195	√

 $[\]sqrt{}$ Indicates that the test is applicable

Table 2: Tests Carried Out Under EN 61000-3-2: 2014/ EN 61000-3-3: 2013

Standard	Test Items		
EN 61000-3-2: 2014	Harmonic Current Test	X	
EN 61000-3-3: 2013	Voltage Fluctuations and Flicker Test	5 1	

 $[\]sqrt{}$ Indicates that the test is applicable

Table 3: Tests Carried Out Under EN55032:2015

Standard	Test Items				
EN61000-4-2:2009	Electrostatic discharge Immunity	1			
EN 61000-4-3:2006+A1:2008 +A2:2010	Radiated Susceptibility (80MHz to 1GHz)	A A			
EN61000-4-4:2004+A1:2010	Electrical Fast Transient/Burst Immunity	√			
EN61000-4-5:2006	Surge Immunity	~~			
EN61000-4-6:2009	Conducted Susceptibility (150kHz to 80MHz)	47 √			
EN61000-4-8:2010	Power Frequency Magnetic Field Immunity (50/60Hz)	X			
EN61000-4-11:2004	Voltage Dips, Short Interruptions Immunity	√			

 $[\]sqrt{}$ Indicates that the test is applicable

1.4 Test Methodology

All measurements contained in this report were conducted with CISPR 16-1: 2006, radio disturbance and immunity measuring apparatus, and CISPR16-2: 2010, Method of measurement of disturbances and immunity

Report No.: TH19LR-2314E Page 5 of 33 EN 55032 Report

[×] Indicates that the test is not applicable

[×] Indicates that the test is not applicable

[×] Indicates that the test is not applicable

1.5 Test Equipment List and Details

No.	Equipment	Manufactur er	Model No.	S/N	Calculator date	Calculator due date
1°	EMI Test Receiver	R&S	ESCI	100687	2019-03-15	2020-03-14
2	EMI Test Receiver	R&S	ESPI	100097	2019-03-15	2020-03-14
3	Amplifier	НР	8447D	1937A0249 2	2019-03-15	2020-03-14
4	Single Power Conductor Module	FCC	FCC-LISN-5-50-1- 01-CISPR25	7101	2019-03-15	2020-03-14
5	Single Power Conductor Module	FCC	FCC-LISN-5-50-1- 01-CISPR25	7102	2019-03-15	2020-03-14
6 🕺	Power Clamp	SCHWARZ BECK	MDS-21	3812	2019-03-15	2020-03-14
7	Positioning Controller	C&C	CC-C-1F	MF780211	N/A	N/A
8	Electrostatic Discharge Simulator	TESEQ	NSG437	125	2019-03-15	2020-03-14
9	Fast Transient Burst Generator	SCHAFFNE R	MODULA6150	34572	2019-03-15	2020-03-14
10	Fast Transient Noise Simulator	Noiseken	FNS-105AX	31485	2019-03-15	2020-03-14
11	Color TV Pattern Genenator	PHILIPS	PM5418	TM209947	N/A	N/A
12	Power Frequency Magnetic Field Generator	EVERFINE	EMS61000-8K	608002	2019-03-15	2020-03-14
13	Capacitive Coupling Clamp	TESEQ	CDN8014	25096	2019-03-15	2020-03-14
14	High Field Biconical Antenna	ELECTRO- METRICS	EM-6913	166	2019-03-15	2020-03-14
15	Log Periodic Antenna	ELECTRO- METRICS	EM-6950	811	2019-03-15	2020-03-14
16	Remote Active Vertical Antenna	ELECTRO- METRICS	EM-6892	304	2019-03-15	2020-03-14
17	TRILOG Broadband Test- Antenna	SCHWARZ BECK	VULB9163	9163-324	2019-03-15	2020-03-14
18	Horn Antenna	SCHWARZ BECK	BBHA9120A	B08000991 -0001	2019-03-15	2020-03-14
19	Teo Line Single Phase Module	SCHWARZ BECK	NSLK8128	D-69250	2019-03-15	2020-03-14
20	Electricity bridge	Zentech	100 LCR METER	803024	2019-03-15	2020-03-14
21/	RF Current Probe	FCC	F-33-4	80	N/A	N/A
22	Signal Generator	HP	8647A	3349A0229 6	2019-03-15	2020-03-14
23	Microwave Amplifier	HP	8349B	2627A0099 4	2019-03-15	2020-03-14
24	Triple-Loop Antenna	EVERFINE	LLA-2	607004	2019-03-15	2020-03-14

Report No.: TH19LR-2314E Page 6 of 33 EN 55032 Report

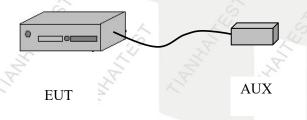
2 - SYSTEM TEST CONFIGURATION

2.1 Justification

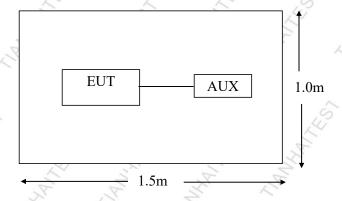
The system was configured for testing in a typical fashion (as normally used by a typical user).

2.2 EUT Exercise Software

The EUT exercising program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. The software offered by manufacture, can let the EUT being normal operation.


2.3 Special Accessories

As shown in section 2.5, interface cable used for compliance testing is shielded as normally supplied by **TH** and its respective support equipment manufacturers.


2.4 Basic Configuration of Test System

Emission: The equipment under test (EUT) was configured to measure its highest possible radiation level. The test modes were adapted accordingly in reference to the Operating Instructions.

Immunity: The equipment under test (EUT) was configured to the representative operating mode and conditions.

2.5 Test Setup Diagram

Report No.: TH19LR-2314E Page 7 of 33 EN 55032 Report

3 - DISTURBANCE VOLTAGE AT THE MAINS TERMINALS

3.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement is 3.4 dB.

3.2 Limit of Disturbance Voltage At The Mains Terminals (Class B)

Emaguanay Danga (MUz)	Limit	ts (dBuV)
Frequency Range (MHz)	Quasi-Peak	Average
0.150~0.500	66~56	56~46
0.500~5.000	56	46
5.000~30.00	60	50

Note: (1) The tighter limit shall apply at the edge between two frequency bands.

3.3 EUT Setup

The setup of EUT is according with CISPR 16-1: 2006, CISPR16-2: 2010 measurement procedure. The specification used was the EN 55032limits.

The EUT was placed center and the back edge of the test table.

The AV cables were draped along the test table and bundled to 30-40cm in the middle.

The spacing between the peripherals was 10 cm.

Maximum emission emitted from EUT was determined by manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation and the levels in the final result of the test were recorded with the EUT running in the operating mode that maximum emission was emitted.

3.4 Instrument Setup

The test receiver was set with the following configurations:

Test Receiver Setting:

IF Band Width......9 KHz

Report No.: TH19LR-2314E Page 8 of 33 EN 55032 Report

3.5 Test Procedure

During the conducted emission test, the EUT power cord was connected to the auxiliary outlet of the first Artificial Mains.

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance using all installation combination.

All data was recorded in the peak detection mode. Quasi-peak and Average readings were only performed when an emission was found to be marginal (within -10 dB μ V of specification limits). Quasi-peak readings are distinguished with a "QP". Average readings are distinguished with a "AV".

3.6 Summary of Test Results

According to the data in section 3.6, the EUT <u>complied with the EN 55032</u>Conducted margin, which represented the worst margin reading.

3.7 Disturbance Voltage Test Data

1, 2	1,3
Temperature (°C)	15~35
Humidity (%RH)	30~60
Barometric Pressure (mbar)	860~1060
EUT	Splice screen processor
M/N	TV-8600CR
Operating Mode	ON

Test data see following pages

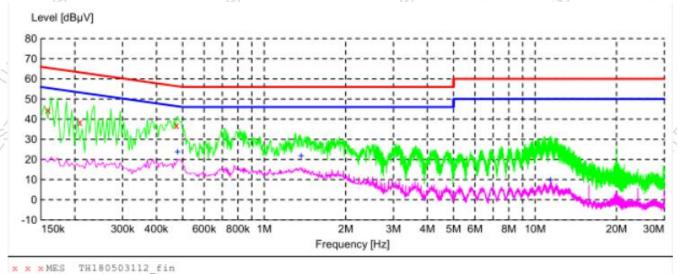
3.8 Test Result

PASS

Report No.: TH19LR-2314E Page 9 of 33 EN 55032 Report

Disturbance Voltage Test Data

EUT: Splice screen processor M/N: TV-8600CR


Operating Condition: ON

Test Site: Shielded Room

Operator: Eric

Test Specification: AC 230V, 50Hz

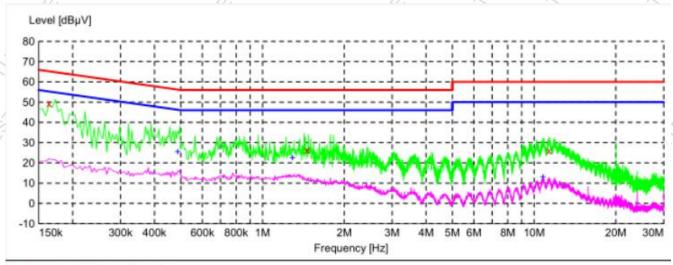
Comment: Live Line Tem:25°C Hum:50%

5	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.159000	44.50	10.0	66	21.0	QP	Ll	GND
	0.208500	38.50	10.7	63	24.8	QP	L1	GND
	0.474000	36.90	10.0	56	19.5	QP	L1	GND
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.478500	23.80	10.0	46	22.6	AV	Ll	GND
7	1.369500	21.80	9.8	46	24.2	AV	L1	GND
	11 413500	9 90	9 9	50	40.1	2/17	1.1	CND

Report No.: TH19LR-2314E Page 10 of 33 EN 55032 Report

Disturbance Voltage Test Data

EUT: Splice screen processor M/N: TV-8600CR


Operating Condition: ON

Test Site: Shielded Room

Operator: Eric

Test Specification: AC 230V, 50Hz

Comment: Neutral Line Tem:25°C Hum:50%

		3.47	200	1000	1.7	6.0	E 150	5.1	7.7	# 2 .	-
×	-	x Mi	1.75	-11	H 1	B-12	202	3.1	1.3	£iı	п.

	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.163500	49.40	10.1	65	15.9	QP	N	GND
	1.459500	26.30	9.8	56	29.7	QP	N	GND
1	11.328000	26.00	9.9	60	34.0	QP	N	GND
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.487500	25.50	10.0	46	20.7	AV	N	GND
	1.288500	22.60	9.8	46	23.4	AV	N	GND
	10.774500	13.00	9.9	50	37.0	AV	N	GND

Report No.: TH19LR-2314E Page 11 of 33 EN 55032 Report

4 - RADIATED DISTURBANCES

4.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement is ± 4.0 dB.

4.2 Limit of Radiated Disturbances (Class B)

?	Frequency (MHz)	Distan	ce (Met	ers)	Field Strengths Limits (dBµV/m)			
	30 ~ 230		J.R	3		77	40	7
	230 ~ 1000	7	200	3	_		47	

Note: (1) The tighter limit shall apply at the edge between two frequency bands.

(2) Distance refers to the distance in meters between the test instrument antenna and the closest point of any part of the E.U.T.

4.3 EUT Setup

The radiated emission tests were performed in the open area 3-meter test site, using the setup accordance with the CISPR 16-1: 2006, CISPR16-2: 2010. The specification used was EN 55013 Class B limits.

The EUT was placed on the center of the test table.

Maximum emission emitted from EUT was determined by manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation and the levels in the final result of the test were recorded with the EUT running in the operating mode that maximum emission was emitted.

4.4 Test Receiver Setup

According to EN 55013 rules, the frequency was investigated from 30 to 1000 MHz. During the radiated emission test, the test receiver was set with the following configurations:

Test Receiver Setting:

Polarity......Horizontal and Vertical

Report No.: TH19LR-2314E Page 12 of 33 EN 55032 Report

4.5 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the peak detection mode. Quasi-peak readings performed only when an emission was found to be marginal (within -10 dB μ V of specification limits), and are distinguished with a "QP" in the data table.

4.6 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $7dB\mu V$ means the emission is $7dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Class B Limit – Corr. Ampl.

4.7 Radiated Emissions Test Result

Temperature (°C)	15~35
Humidity (%RH)	30~60
Barometric Pressure (mbar)	860~1060
EUT	Splice screen processor
M/N	TV-8600CR
Operating Mode	ON F

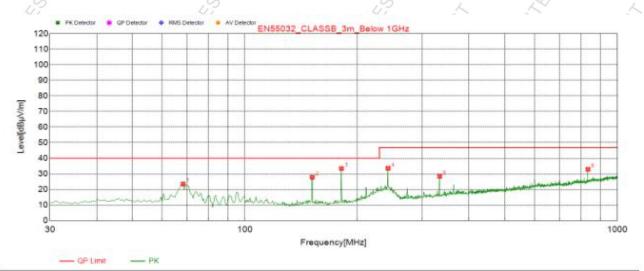
4.8 Test Result

PASS

Report No.: TH19LR-2314E Page 13 of 33 EN 55032 Report

Radiated Emission Test Data

EUT: Splice screen processor M/N: TV-8600CR


Operating Condition: ON

Test Site: 3m CHAMBER

Operator: Eric

Test Specification: AC 230V, 50Hz

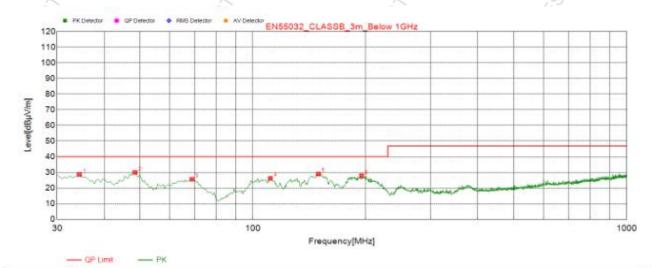
Comment: Polarizations: Horizontal Tem:24°C Hum:50%

Suspected List											
NO.	Freq.	Result Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle[°]	Polarity			
1	68.315	23.47	-17.78	40.00	16.53	300	174	Horizontal			
2	151.73	27.85	-19.02	40.00	12.15	300	265	Horizontal			
3	181.80	33.43	-17.28	40.00	6.57	100	243	Horizontal			
4	242.43	33.59	-14.11	47.00	13.41	100	163	Horizontal			
5	333.61	28.41	-11.88	47.00	18.59	100	285	Horizontal			
6	834.13	32.92	-2.27	47.00	14.08	300	218	Horizontal			

Report No.: TH19LR-2314E Page 14 of 33 EN 55032 Report

Radiated Emission Test Data

EUT: Splice screen processor M/N: TV-8600CR


Operating Condition: ON

Test Site: 3m CHAMBER

Operator: Eric

Test Specification: AC 230V, 50Hz

Comment: Polarizations: Vertical Tem:24°C Hum:50%

Suspected List										
NO.	Freq.	Result Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle[°]	Polarity		
1	34.365	28.64	-16.10	40	11.36	100	359	Vertical		
2	48.430	30.01	-14.10	40	9.99	100	325	Vertical		
3	68.800	25.62	-17.90	40	14.38	100	59	Vertical		
4	111.48	26.24	-16.25	40	13.76	100	220	Vertical		
5	149.79	29	-19.10	40	11.00	100	170	Vertical		
6	195.38	27.86	-15.91	40	12.14	100	274	Vertical		

Report No.: TH19LR-2314E Page 15 of 33 EN 55032 Report

5 - HARMONIC CURRENT TEST (EN 61000-3-2)

5.1 Application of Harmonic Current Emission

Compliance to these standards ensures that tested equipment will not generate harmonic currents at levels that cause unacceptable degradation of the main environment. This directly contributes to meeting compatibility levels established in other EMC standards, which defines compatibility levels for low-frequency conducted disturbances in low-voltage supply systems.

5.2 Measurement Data

Note: For detailed test data, refer to the following pages:

Standard used:	EN/IEC 61000-3-2 A14 (2006) Quasi-stationary - Equipment class A							
Observation time:	150s							
E. U. T	Splice screen processor							
M/N	TV-8600CR							
Operation Mode	F F. F.							

5.3 Test Results

PASS

Report No.: TH19LR-2314E Page 16 of 33 EN 55032 Report

6 - VOLTAGE FLUCTUATIONS AND FLICKER TEST (EN 61000-3-3)

6.1 Application of Voltage Fluctuations and Flicker Test

Compliance to these standards ensures that tested equipment will not generate flickers and voltage change at levels that cause unacceptable degradation of the main environment. This directly contributes to meeting compatibility levels established in other EMC standards, which defines compatibility levels for low-frequency conducted disturbances in low-voltage supply systems.

6.2 Measurement Data

Note: For detailed test data, refer to the following pages:

Standard used:	EN/IEC 61000-3-3 Flicker
Short time (Pst):	10 min
Observation time:	10 min (1 Flicker measurement)
Flickermeter:	230V/ 50Hz
E. U. T.:	Splice screen processor
M/N	TV-8600CR
Operation Mode	- 13 - 13 - 13 - 13 - 13 - 13 - 13 - 13

Test Result: PASS

Maximum Flicker results

7	EUT values	Limit	Result
Pst 🙏	0.029	1.00	PASS
dc [%]	0.054	3.30	PASS
dmax [%]	0.414	4.00	PASS
dt [s]	0.000	0.50	PASS

6.3 Test Results

The EUT was subjected to the voltage fluctuations and flicker test required by EN 61000-3-3: 2013

Report No.: TH19LR-2314E Page 17 of 33 EN 55032 Report

7 - EN 55024 TEST PROCEDURES

7.1 Electrostatic Discharge Test System

An EM TEST DITOC0103Z ESD simulator is used for all testing. It is capable of applying Electrostatic discharges in both contact discharge modes to 4 kV and air discharge modes to 8 kV in both positive and negative polarities. This is in accordance with the IEC 61000-4-2 basic EMC publication.

7.2 Radiated Susceptibility Test System

An IFR 2032 signal generator and a Amplifier Research power amplifier are used to provide a signal at the appropriate power and frequency to a transmitting antenna to obtain the required electromagnetic field at the position of the EUT in accordance with the IEC 61000-4-3 basic EMC publication. The field was monitored by Amplifier Research field probe and Amplifier Research PM2002 power meter according the IEC 61000-4-3 standards. In order to judge the performance of the EUT, a set of monitor system is used.

7.3 Electrical Fast Transient/Burst Immunity Test System

An EM Test UCS 500-M6 Immunity test system is used for all testing. It is capable of applying fast transients to the AC line at any phase angle with respect to the AC line voltage wave form and to attached cables via a capacitive coupling clamp in accordance with the IEC 61000-4-4 basic EMC publication.

7.4 Surge Immunity Test System

An EM Test UCS 500-M6 Immunity test system is used for all testing. Both positive and negative polarities of voltage up to 2kV were applied to the AC input lines. The coupling network defined in the standard was used.

7.5 Conducted Susceptibility Test System

An IFR 2032A signal generator and a set of Amplifier Research test system are used for the testing. EUT was tested from 0.15 MHz to 80 MHz with 1kHz sine wave, 80% modulation with 3Vr.m.s. CDN coupling and decoupling networks and EM clamp was tested. During the tests, injected was applied to power line by using CDNs-6.2.2 method, and I/O lines was injected by using EM clamp injection-6.2.3.method.

6.6 Power Frequency Magnetic Field Immunity Test System

An EM Test UCS 500-M6 Immunity test system is used for all testing. Test level as described in IEC 61000-4-8 titled "Table 1 – Test Levels for continuous field" was chosen. Single turn induction coil in 1m x 1m size was used to generate the magnetic field.

7.7 Voltage Dips, Short Interruptions Immunity Tests System

An EM Test UCS 500-M6 Immunity test system is used for all testing. Test level as described in IEC 61000-4 11, section 5, titled "Test Levels".

Report No.: TH19LR-2314E Page 18 of 33 EN 55032 Report

7.8 Equipment Test Table

IEC 61000-4-2: 1995 specifies that a tabletop EUT shall be placed on a non-conducting table which is 80 centimeters above a ground reference plane and that floor mounted equipment shall be placed on a insulating support approximately 10 centimeters above a ground plane. During the tests, the EUT is positioned over a ground reference plane in conformance with this requirement.

For tabletop equipment, a 1.6 by 0.8-meter metal sheet (HCP) is placed on the table and connected to the ground plane via a metal strap with two 470 k Ohms resistors in series. The EUT and attached cables are isolated from this metal sheet by 0.5-millimeter thick insulating material. A Vertical Coupling Plane (VCP) grounded on the ground plane through the same configuration as in the HCP is used.

IEC 61000-4-3 and IEC 61000-4-4 specify that a tabletop EUT be placed on a non-conducting table 80 centimeters above a ground reference plane and that floor-mounted equipment shall be placed on an insulating support approximately 10 centimeters above a ground plane. During the IEC 61000-4-3 tests, the EUT is positioned on a table in a shielded semi-anechoic test chamber to reduce reflections from the internal surfaces of the chamber. During the IEC 61000-4-4 tests, the EUT is positioned on a table over a ground reference plane in conformance with this requirement.

7.9 Instrument Calibration

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications.

Extensive engineering efforts have been made to ensure test data reliability through Quality Control and regular equipment calibration schedules. However, the application of radio frequency fields and voltages are not without an unavoidable level of uncertainty. These include inaccuracies in antenna factors, chamber imperfections and possible test generator output uncertainties.

Report No.: TH19LR-2314E Page 19 of 33 EN 55032 Report

8 - EN 55024 TEST PROCEDURES

8.1 EUT and Cable Placement

The EUT and any peripherals are located at the center of the table for tabletop devices and in the center of the ground plane with the insulating support for floor-standing devices. The standards require that interconnecting cables to be connected to available ports of the unit and that the placement of the unit and the attached cables simulate a typical installation so far as to be practical.

8.2 Application of Electrostatic Discharge Immunity Test

The test is conducted in the following order according to the basic standard IEC 61000-4-2: Air Discharge, Direct Contact Discharge, Indirect Contact Horizontal Coupling Plane Discharge, and Indirect Contact Vertical Coupling Plane Discharge. The Electrostatic Discharge test levels are set and discharges for the different test modes are set appropriately. The Electrostatic Discharge is applied to the conductive surface of the computer in which the EUT is enclosed, and along all seams and control surfaces on the computer. When a discharge occurs and an error is caused, the type of error, discharge level and location is recorded.

8.3 Application of Radiated Susceptibility Test

The electromagnetic field is established at the front edge of the EUT. The frequency range is swept from 80 to 1000 MHz using a power level necessary to obtain a 3 volt/meter and 80% amplitude of a 1 kHz sine wave modulated field Strength is directed at the EUT. The test is performed with each of four sides of EUT facing the transmitting antenna. If an error is detected when the susceptible side of the EUT facing the transmitting antenna, the field is reduced until the error is not repeatable, the field is then manually increased until the error begins to occur. This threshold level, the frequency and the error created are noted before continuing. Both horizontal and vertical polarization of the antenna are set on test and measured individually

8.4 Application of Electrical Fast Transient/Burst Immunity Test

The EUT was arranged for Power Line Coupling and for I/O Line Coupling through a capacitive clamp, where applicable. (Note: The I/O coupling test using a capacitive clamp is performed on the I/O interface cables that are longer in length than 3 meters.) A metal ground plane 2.4 meter by 2.0 meter was placed between the floor and the table and is connected to the earth by a 2.0 meter ground rod. The ground rod is connected to the test facility's electrical earth.

8.5 Application of Surge Immunity Test

The EUT was setup as described in IEC 61000-4-5 and the test shall be performed according to the test plan.

8.6 Application of Conducted Susceptibility Test

The EUT was setup according to the IEC 61000-4-6 and the test shall be performed with the test generator connected to each of the coupling and decoupling devices in turn while the other non-excited RF input ports of the coupling devices are terminated by a 50 Ω load resistor. The frequency range is 150kHz to 80 MHz.

Report No.: TH19LR-2314E Page 20 of 33 EN 55032 Report

8.7 Application of Power Frequency Magnetic Field Immunity Test

It is deemed that according to the standard of EN55024, this test is not applicable to the EUT which dose not contain devices susceptible to magnetic fields, such as CRT monitors, Hall elements, electro-dynamic microphone, magnetic field sensor, etc.

8.8 Application of Voltage Dips, Short Interruptions Immunity Tests

The EUT was setup according to the IEC 61000-4-11 and the test shall be done as the procedure described in the standard.

8.9 Deviations from the Standard

No deviations from EN 55024 were made when performing the tests described in this report.

Report No.: TH19LR-2314E Page 21 of 33 EN 55032 Report

9 - TEST DATA

9.1 Electrostatic Discharge Immunity Test (IEC 61000-4-2)

Temperature (°C)	15~35
Humidity (%RH)	30~60
Barometric Pressure (mbar)	860~1060
EUT	Splice screen processor
M/N	TV-8600CR
Operating Mode	ON S

Table 1: Electrostatic Discharge Immunity (Air Discharge)

IEC 61000-4-2 Test						Test I	Levels											
	Points	-2 kV	+2 kV	-4 kV	+4 kV	-6 kV	+6 kV	-8 kV	+8 kV	-15 kV	+15 kV							
Shell	2 Points	A	A	A	A	A	A	A	A	/	/							
Button	10 Points	A	A	A	A	A	A	A	A	/	/							
Slots	2 Point	A	A	A	A	A	A	A	A	/	/							

Table 2: Electrostatic Discharge Immunity (Direct Contact)

IEC 61000-4-2 Test	Test Levels									
Points	-2 kV	+2 kV	-4 kV	+4 kV	-6 kV	+6 kV	-8 kV	+8 kV	-15 kV	+15 kV
N/A	/	/	/	/	/	/	/	/	/	/

Table 3: Electrostatic Discharge Immunity (Indirect Contact HCP)

Test Levels										
IEC 61000-4-2 Test Points	-2 kV	+2 kV	-4 kV	+4 kV	-6 kV	+6 kV	-8 kV	+8 kV	-15 kV	+15 kV
Front Side	A	A	A	A	/	/	/	/	/	/
Back Side	A	A	A	A	1	/	/	/	/	/
Left Side	A	A	A	A	1	/	/	/	/	/
Right Side	A	A	A	A	1	/	/	/	/	/

Table 4: Electrostatic Discharge Immunity (Indirect Contact VCP)

IEC 61000-4-2					Test	Levels												
Test Points	-2 kV	+2 kV	-4 kV	+4 kV	-6 kV	+6 kV	-8 kV	+8 kV	-15 kV	+15 kV								
Front Side	A	A	A	A	/	/	/	1	/	/								
Back Side	A	A	A	A	/	/	/	1	/	/								
Left Side	A	A	A	A	/	1	/	1	/	/								
Right Side	A	A	A	A	/	/	/	1	/	/								

Report No.: TH19LR-2314E Page 22 of 33 EN 55032 Report

9.2 Radiated Susceptibility Test (IEC 61000-4-3)

Frequency Range (MHz): 80~1000MHz

Modulation: Amplitude 80%, 2.4GHz sinewave

Severity Level: 3V/m

Temperature (°C)	15~35	0		
Humidity (%RH)	30~60			
Barometric Pressure (mbar)	860~1060			
EUT	Splice screen processor			
M/N	TV-8600CR	,0		
Operating Mode	ON	~		

Frequency Range (MHz)	Front (3	V/m)	Rear (3	3 V/m)	Left Side	e (3 V/m)	Right S	Side (3 V/m)
80-1000	VERT	HORI	VERT	HORI	VERT	HORI	VERT	HORI
1400-2700	A	A	A	A	A	A	A	A

9.3 Electrical Fast Transient/Burst Immunity Test (IEC 61000-4-4)

Temperature (°C)	15~35	74	7		
Humidity (%RH)	30~60				
Barometric Pressure (mbar)	860~1060				
EUT	Splice screen processor				
M/N	TV-8600CR	6	7		
Operating Mode	ON	4	7/2		

IEC 61000-4-4 Test Points		Test Levels (kV)							
		+0.5	-0.5	+1.0	-1.0	+2.0	-2.0	+4.0	-4.0
	L1	A	A	A	A	/	/	/	/
49	L2	A	A	A	A	/	/	/	/
Splice screen	Earth	A	A	A	A	/	/	/	/
processor	L1+L2	A	A	A	A	/	/	/	/
Power Line of EUT	L1 + Earth	A	A	A	A	/	/	/	/
TA	L2 + Earth	A	A	A	A	/	/	/	/
	L1+L2+Earth	A	A	A	A	/	/	/	/

Report No.: TH19LR-2314E Page 23 of 33 EN 55032 Report

9.4 Surge Immunity Test (IEC 61000-4-5)

Temperature (°C)	15~35
Humidity (%RH)	30~60
Barometric Pressure (mbar)	860~1060
EUT	Splice screen processor
M/N	TV-8600CR
Operating Mode	ON

Table 1: Surge Splice screen processor

Level	Voltage	Poll	Path	Pass	Fail
1	0.5kV	±	L-N	A	/
2	1kV	± 3	L-N	A	/
3	2kV	+ 8	L-PE, N-PE	A	/
4	4kV	±	L-N, L-PE, N-PE	A	/

9.5 Conducted Susceptibility Test (IEC 61000-4-6)

Frequency Range (MHz): 0.15~80MHz Modulation: Amplitude 80%, 2.4GHz sinewave

Severity Level: 3Vr.m.s.

Temperature (°C)	15~35				
Humidity (%RH)	5	30~60			
Barometric Pressure (mbar)	24	5	860~1060	5	8
EUT	F	Splic	ce screen proces	sor	37
M/N	7,	T.	TV-8600CR	T.	R
Operating Mode	N. C.	7,	ON	7	Α,

Level	Voltage Level (e.m.f.) U ₀	Pass	Fail
1	\$ 1 E	/	/
2	3 7	A	/
3	10	/	/
X	Special	/	/

Page 24 of 33 Report No.: TH19LR-2314E EN 55032 Report

9.6 Voltage Dips, Short Interruptions Immunity Tests (IEC 61000-4-11)

1. 2	
Temperature (°C)	15~35
Humidity (%RH)	30~60
Barometric Pressure (mbar)	860~1060
EUT	Splice screen processor
M/N	TV-8600CR
Operating Mode	ON

Level	U2	td	Phase Angle	N	Pass	Fail
1	>95%	10ms	0/90/180/270	3	В	/
2	30%	500ms	N/A	3	С	/
3	>95%	5000ms	N/A	3	С	/

Note:

- A. The apparatus shall continue to operate as intended during and after the test. The manufacturer specifies some minimum performance level. The performance level may be specified by the manufacturer as a permissible loss of performance.
- B. The apparatus shall continue to operate as intended after the test. This indicates that the EUT does not need to function at normal performance levels during the test, but must recover. Again some minimal performance is defined by the manufacture. No change in operating state or loss or data is permitted.
- C. Temporary loss of function is allowed. Operation of the EUT may stop as long as it is either automatically reset or can be manually restored by operation of the controls.

Report No.: TH19LR-2314E Page 25 of 33 EN 55032 Report

10 - TEST RESULTS

The following tests were performed on the EUT product; model: TV-8600CR; the actual test results are contained within the Test Data section of this report.

10.1 IEC 61000-4-2 Electrostatic Discharge Immunity Test Configuration

The EUT was subjected to the electrostatic discharge tests required by EN 55024 and all lower levels specified in IEC 61000-4-2.

The EUT continued to perform as intended during and after the application of the ESD.

10.2 IEC 61000-4-3 Radiated Susceptibility Test Configuration

The EUT was subjected to a 3-volt/meter, 80% Amplitude, 2.4GHz Sine wave field as required by EN 55024 and all lower levels specified in IEC 61000-4-3.

The EUT continued to perform as intended during and after the application of the electromagnetic field.

10.3 IEC 61000-4-4 Electrical Fast Transient/Burst Immunity Test Configuration

The EUT was subjected to the electrical fast transient tests required by EN 55024 and all lower levels specified in IEC 61000-4-4.

The EUT continued to perform as intended during and after the application of the EFT/B.

10.4 IEC 61000-4-5 Surge Immunity Test Configuration

The EUT was subjected to the Surge Immunity tests required by EN 55024 and all lower levels specified in IEC 61000-4-5.

The EUT continued to perform as intended during and after the application of the Surge Immunity Test.

10.5 IEC 61000-4-6 Conducted Susceptibility Test Configuration

The EUT was subjected to the Conducted Susceptibility tests required by EN 55024 and all lower levels specified in IEC 61000-4-6.

The EUT continued to perform as intended during and after the application of the Conducted Susceptibility Test.

10.6 IEC 61000-4-11 Voltage Dips, Short Interruptions Immunity Tests Configuration

The EUT was subjected to the Voltage Dips/Interruptions tests required by EN 55024 and all lower levels specified in IEC 61000-4-11.

The EUT continued to perform as intended during and after the application of the Voltage Dips/Interruptions Test.

Report No.: TH19LR-2314E Page 26 of 33 EN 55032 Report

APPENDIX A - PRODUCT LABELING

CE Marking Label Specification

Specification: Text is Black or white in color and is left justified. Labels are printed in indelible ink on permanent adhesive backing and shall be affixed at a conspicuous location on the EUT or silk-screened onto the EUT.

Proposed Label Location on EUT

EUT Rear View/Proposed CE Marking Location

Report No.: TH19LR-2314E Page 27 of 33 EN 55032 Report

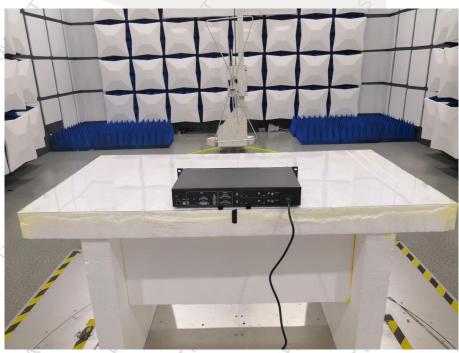
APPENDIX B - EUT PHOTOGRAPHS

Report No.: TH19LR-2314E Page 28 of 33 EN 55032 Report

Report No.: TH19LR-2314E Page 29 of 33 EN 55032 Report

Report No.: TH19LR-2314E Page 30 of 33 EN 55032 Report

Report No.: TH19LR-2314E Page 31 of 33 EN 55032 Report



Report No.: TH19LR-2314E Page 32 of 33 EN 55032 Report

APPENDIX C - TEST SETUP PHOTOGRAPHS

********END OF THE REPORT******

Report No.: TH19LR-2314E Page 33 of 33 EN 55032 Report